VENUS METALS

"Venus Metals Corporation holds a significant and wide-ranging portfolio of Australian gold, copper, base metals, lithium, titanium and vanadium exploration projects in Western Australia, in addition to owning various Royalties and being a substantial shareholder of ASX listed gold developer Rox Resources Limited."

VENUS METALS CORPORATION LIMITED

Unit 2/8 Alvan St Subiaco, WA 6008 +61 8 9321 7541 info@venusmetals.com.au www.venusmetals.com.au ABN: 99 123 250 582

DIRECTORS

Peter Charles Hawkins
Non-Executive Chairman

Matthew Vernon Hogan Managing Director

Kumar Arunachalam Executive Director

Barry Fehlberg

Non-Executive Director

COMPANY SECRETARY

Ordinary shares on Issue 196m
Share Price \$0.069
Market Cap. \$13.52m
Cash & Liquid Investments \$11.6m

ASX ANNOUNCEMENT

ASX CODE: VMC

13 December 2024

EXPLORATION UPDATE COPPER HILLS Cu-Au, YOUANMI ZINC

Venus Metals Corporation Limited ("Venus" or the "Company") is pleased to announce the results of recent exploration activities at the Copper Hills Cu-Au Project and the Youanmi Base Metals Project, both located in Western Australia.

Copper Hills Cu-Au Project

Venus' tenement E45/6437 is located in the southern domain of the highly Prospective Paterson Province, host to the world-class Telfer Au-Cu Mine and significant new mineral discoveries including the Winu Cu-Au deposit, and the Havieron Au-Cu deposit (Figure 1). Following a comprehensive compilation and interpretation of geophysical data for the area, recent exploration by Venus has included targeted ground gravity surveys (Refer ASX 19 September 2024, 21 August 2024, 31 July 2024), and a programme of ultrafine (UF) soil sampling over geophysical targets (see below).

- Results of UF soil sampling programme reveal several Copper geochemical anomalies that require follow-up field investigations.
- Elevated coincident Gold Bismuth Antimony ± Arsenic in UF soils in the southern sector of the tenement near the complexly faulted boundary of the Camel-Tabletop Graben. Potential for gold mineralisation under cover.

The company has conducted 100m by 400m spaced UF soil sampling over selected geophysical targets, with a focus on the poorly exposed and under-explored southeastern sector of the Project Area (Figure 2).

The results show several anomalous areas including subtle copper anomalies (up to 108ppm Cu; Area A) in the Gazza / Black Forest area, which has been a main target for historical exploration drilling, and also a new copper-gold anomalous area at Area B (Figure 2). Considered of special interest are the common elevated values of gold (up to 9.8ppb Au), and bismuth and antimony (potential indicator elements for gold mineralisation) in samples from Area C (Figure 2). This area is situated in the southern sector of the tenement, close to the margin of a major graben structure (Camel-Tabletop Graben). The graben controlled the deposition of Tarcunyah Group sediments that are exposed south of tenement E45/6437 and that hosts structurally-controlled Cu-Au mineralisation at Leon's Find, some 10 km west and broadly along strike from Area C (Figure 2).

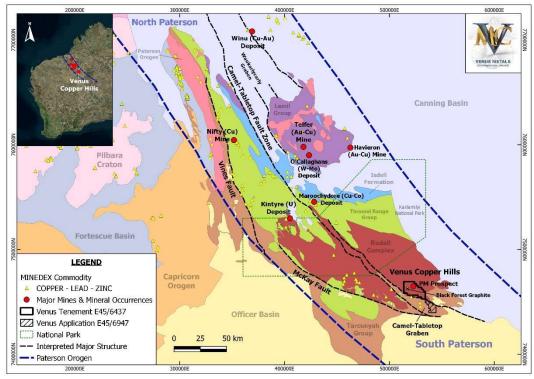


Figure 1 Outline of Paterson Orogen with location of Copper Hills tenements over GSWA 1:500k scale interpreted solid geology.

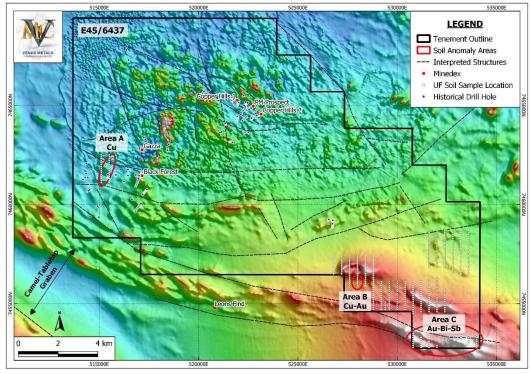


Figure 2. Copper Hills Project. Location of UF soil samples with outline of anomalous areas over background of aeromagnetic image (TMI-RTP).

<u>Youanmi Base Metal Project – Pincher Well North Zinc RC Drilling</u>

A Reverse Circulation (RC) drilling programme has been completed (Figure 3; refer ASX 1 November 2024) and assay results for 4m composite drill samples have been received.

- Total of six RC holes for 733 metres drilled in three target areas to test geophysical anomalies and the distribution of zinc mineralization at the Pincher North Dome Prospect.
- Zinc intersection in VMC251 at Pincher Well: 12m @ 1.21% Zn from 72m, including 4m @ 2.23% Zn.

Two RC holes were drilled in tenement E57/986 (VMC253 and VMC254) to test previously identified coincident gravity and magnetic anomalies (refer ASX release 31 January 2024). In addition, one hole (VMC255) was a pre-collar drilled to a depth of 150m for later diamond tail to test a conductor of 5000 siemens at 400m depth (refer ASX release 31 January 2024). The RC drill holes intersected sulphide rich zones, however there are no anomalous base metals associated with visible sulphides. All three drill holes did not reach their respective target depths due to difficult groundwater conditions.

One RC hole (VMC251) was drilled to a depth of 144m (E57/1019) to test the extension of Zn mineralised zones within the Pincher Well prospect (Figure 3). The hole intersected 12m @ 1.21% Zn from 72m including 4m @ 2.13% Zn (Table 3). Two pre-collar holes (VMC250 & VMC252) were also drilled adjacent to previously reported significant intersections of Zinc mineralisation in Venus RC holes VPW40 and VPW62 (refer ASX release 27 April 2017 and 29 May 2019) to depths of 42m and 52m respectively for later diamond tails for planned metallurgical test work.

Table 1. Pincher Well North. Details of drilled RC holes.

Hole ID	East (m)	North (m)	Dip	Azi	Depth (m)	Tenement	Comment
VMC250	674000	6821707	-60	270	42	E57/1019	Pre-collar
VMC251	674025	6821774	-90	360	144	E57/1019	Pincher Well North Zn deposit
VMC252	674000	6821894	-60	270	52	E57/1019	Pre-collar
VMC253	673876	6824525	-60	90	162	E57/986	Primary gravity/magnetic peak
VMC254	673651	6824312	-60	90	183	E57/986	Primary gravity/magnetic peak
VMC255	673701	6823050	-90	360	150	E57/986	Pre-collar; PW1 MLTEM Model 400m depth

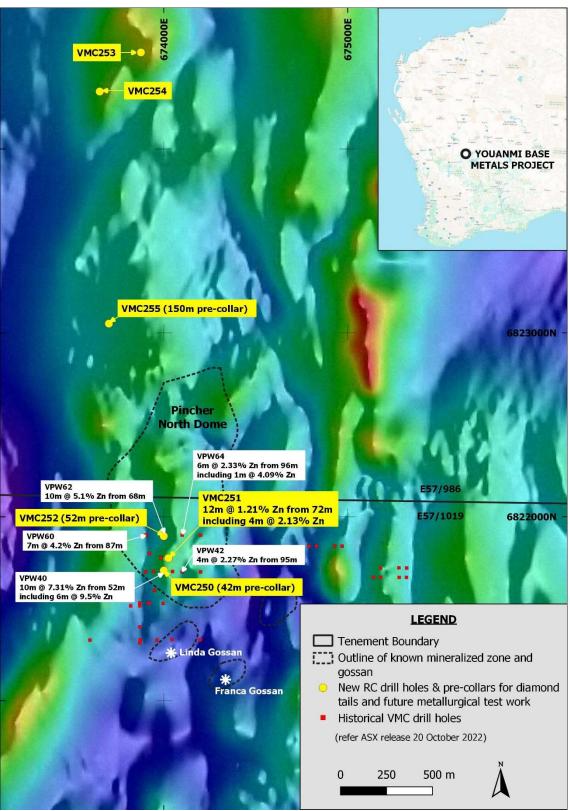


Figure 3. Pincher Well North. Location of drillhole collars over aeromagnetic image (TMI-RTP).

Table 2. Copper Hills Project. Selected assay results for ultrafine soil samples. Assays are listed are for 95^{pctl} results for Cu, Au, As, Bi, Mo, Sb, and W. Shown in bold are 98^{pctl} assays for the different elements

different	elemen	ts							
Sample ID	East (m)	North (m)	Cu ppm	Au ppb	As ppm	Bi ppm	Mo ppm	Sb ppm	W ppm
24080003	515100	7462300	41.1	bd	7.7	0.44	1.07	0.29	0.19
24080004	515100	7462200	41.2	1.1	8.6	0.43	1.38	0.30	0.29
24080006	515100	7462000	43.0	bd	8.0	0.45	0.89	0.30	0.13
24080007	515100	7461900	56.8	1.0	7.4	0.43	0.87	0.26	0.10
24080008	515100	7461800	57.9	0.7	7.3	0.42	1.24	0.28	0.18
24080009	515100	7461700	52.8	1.5	8.1	0.40	1.09	0.28	0.17
24080010	515100	7461600	49.9	2.5	5.8	0.28	0.75	0.21	0.16
24080011	515100	7461500	64.3	3.7	6.3	0.34	0.74	0.23	0.17
24080012	515100	7461400	47.1	1.0	7.5	0.39	0.97	0.26	0.16
24080013	515100	7461300	37.4	2.0	5.2	0.30	0.59	0.21	0.07
24080014	515100	7461200	62.0	2.1	7.0	0.33	0.72	0.23	0.13
24080015	515100	7461100	61.2	2.2	6.0	0.28	0.59	0.20	0.14
24080017	515500	7462400	54.6	1.9	6.9	0.36	0.67	0.26	0.18
24080017	515500	7462300	108.0	3.1	9.6	0.43	1.13	0.31	0.20
24080022	515500	7461900	35.2	1.0	10.0	0.45	1.03	0.33	0.21
24080022	515500	7461800	43.7	0.8	8.5	0.46	1.09	0.32	0.25
24080024	515500	7461700	57.6	bd	7.7	0.44	1.04	0.31	0.15
24080024	515500	7461600	61.1	2.2	5.5	0.26	0.66	0.19	0.13
24080025	515500	7461500	61.0	3.7	7.7	0.32	0.58	0.19	0.14
24080028	515500	7461300	43.9	bd	7.7	0.32	1.11	0.24	0.11
24080028	526800	7451300	35.3	3.1	6.2	0.45	0.47	0.31	0.19
24080031	526800		51.0			0.26			
24080035	526800	7457000 7457300	24.1	0.8 5.0	7.1 7.2	0.45	0.95 0.49	0.26 0.18	0.16 0.13
24080043	527200	7457200	29.0	2.9	7.8	0.26	0.54	0.21	0.16
24080045	527200	7457000 7456900	62.3	0.7	7.2	0.45	0.76	0.27	0.07
24080046 24080047	527200		59.5	bd	6.6	0.43	1.19	0.24	0.04
	527200	7456800	55.0	bd 1.0	5.3	0.35	0.85	0.24	0.16
24080049	527200	7456600	54.9	1.0	7.9	0.48	0.88	0.31	0.07
24080050	527200	7456500	55.6	bd	6.9	0.46	1.03	0.26	0.05
24080059	527600	7456600	41.1	0.9	8.7	0.51	1.47	0.31	0.24
24080060	527600	7456500	31.6	1.0	7.9	0.47	1.44	0.28	0.22
24080061	527600	7456400	33.0	bd	8.4	0.52	1.28	0.32	0.23
24080065	527600	7456000	49.7	0.5	9.2	0.46	1.37	0.29	0.20
24080068	528000	7457300	35.9	bd	9.0	0.49	1.45	0.31	0.23
24080079	528000	7456200	36.9	5.1	7.6	0.45	1.14	0.30	0.21
24080080	528000	7456100	87.3	0.7	7.5	0.43	1.25	0.27	0.20
24080081	528000	7456000	85.9	1.8	7.3	0.44	1.24	0.29	0.20
24080083	528400	7457400	38.0	0.8	7.3	0.43	1.15	0.28	0.27
24080084	528400	7457300	37.2	0.8	7.2	0.49	1.38	0.32	0.30
24080085	528400	7457200	35.2	bd	7.7	0.51	1.09	0.34	0.21
24080086	528400	7457100	28.5	0.5	8.2	0.48	1.20	0.32	0.26
24080088	528400	7456900	19.6	0.9	9.4	0.52	1.04	0.34	0.22
24080090	528400	7456700	19.8	0.7	8.2	0.46	0.97	0.31	0.18
24080092	528400	7456500	18.3	1.0	6.0	0.33	0.78	0.23	0.16
24080093	528400	7456400	21.9	1.3	7.7	0.49	1.47	0.29	0.22
24080097	528400	7456000	35.0	1.6	8.5	0.48	1.63	0.32	0.25
24080104	528800	7456900	62.2	0.9	6.4	0.35	0.60	0.29	0.20
24080106	528800	7456700	26.5	0.8	10.9	0.49	0.90	0.33	0.20
24080140	529200	7454800	25.5	0.9	8.7	0.52	1.21	0.33	0.20
24080142	529400	7455100	25.1	3.0	8.3	0.51	1.38	0.34	0.20
24080144	529400	7454900	23.2	2.6	8.9	0.51	1.27	0.34	0.18
24080152	529600	7455600	22.3	1.7	7.0	0.47	1.51	0.29	0.19
24080161	529600	7454700	23.0	1.0	7.1	0.52	1.19	0.29	0.25
24080167	530000	7455600	25.2	1.5	7.1	0.44	1.42	0.28	0.21
24080176	530000	7454700	24.7	0.5	8.2	0.51	1.58	0.32	0.27
24080181	530400	7455700	25.9	1.9	6.6	0.49	1.41	0.29	0.21
24080185	530400	7455300	27.3	2.8	6.9	0.40	1.26	0.27	0.20
24080233	531200	7455600	25.8	3.1	6.5	0.36	1.11	0.24	0.21
24080341	532000	7456000	21.2	1.0	8.4	0.44	1.30	0.32	0.25
24080342	532000	7455900	22.1	1.2	10.0	0.50	1.41	0.38	0.28
24080344	532000	7455700	21.5	1.1	9.1	0.46	1.42	0.34	0.27
24080345	532000	7455600	21.9	1.5	8.2	0.45	1.30	0.32	0.26

Table 2. (continued)

Table 2.	(continue	ed)							
Sample ID	East (m)	North (m)	Cu ppm	Au ppb	As ppm	Bi ppm	Mo ppm	Sb ppm	W ppm
24080349	532000	7455200	25.8	0.9	7.6	0.39	1.00	0.28	0.26
24080396	532400	7455500	27.3	2.0	7.3	0.47	1.46	0.29	0.13
24080401	532400	7455000	27.3	0.6	8.1	0.52	1.15	0.29	0.14
24080263	531600	7458600	39.9	4.6	6.1	0.22	0.54	0.21	0.20
24080264	531600	7458500	46.5	1.0	7.0	0.28	0.59	0.23	0.18
24080265	531600	7458400	36.7	0.6	6.9	0.41	0.88	0.22	0.07
24080266	531600	7458300	26.9	1.3	8.3	0.42	1.41	0.26	0.12
24080268	531600	7458100	34.5	2.7	6.1	0.25	0.55	0.20	0.15
24080269	531600	7458000	30.8	3.3	6.6	0.19	0.42	0.19	0.16
24080270	531600	7457900	45.2	bd	8.0	0.38	1.03	0.29	0.16
24080272	531600	7457700	24.4	1.2	9.4	0.43	1.07	0.32	0.21
24080274	531600	7457500	27.0	3.3	6.7	0.21	0.52	0.20	0.19
24080280	531600	7456900	24.1	bd	7.5	0.46	1.44	0.31	0.26
24080323	532000	7458200	28.6	2.1	7.2	0.43	1.55	0.30	0.25
24080327	532000	7457800	23.6	1.1	8.9	0.45	1.66	0.31	0.27
24080335	532000	7457000	20.6	1.3	9.3	0.46	1.39	0.36	0.22
24080336	532000	7456900	22.3	1.0	8.9	0.42	1.34	0.31	0.25
24080381	532400	7458000	30.7	1.7	6.3	0.39	1.03	0.24	0.16
24080383	532400	7457800	28.4	2.7	7.0	0.41	1.28	0.24	0.22
24080425	532800	7458600	30.4	0.6	7.0	0.35	1.07	0.24	0.16
24080426	532800	7458500	30.7	1.4	7.4	0.37	1.11	0.26	0.18
24080432	532800	7457900	32.7	0.6	7.2	0.41	1.03	0.25	0.10
24080433	532800	7457800	38.6	0.8	7.6	0.42	1.26	0.28	0.21
24080435	532800	7457600	26.7	bd	6.6	0.45	0.82	0.22	0.05
24080446	532800	7456500	22.9	1.5	8.8	0.41	1.38	0.32	0.29
24080489	533200	7457300	25.3	0.9	9.3	0.38	1.27	0.31	0.22
24080490	533200	7457200	24.6	1.1	9.5	0.42	1.42	0.35	0.31
24080491	533200	7457100	25.9	0.9	8.9	0.38	1.26	0.31	0.27
24080493	533200	7456900	24.4	1.4	9.3	0.41	1.35	0.31	0.14
24080496	533200	7456600	25.4	1.1	8.5	0.43	1.42	0.33	0.17
24080521	533600	7458700	26.5	0.5	10.4	0.46	1.25	0.35	0.18
24080523	533600	7458500	36.5	1.3	8.0	0.36	1.26	0.27	0.21
24080529	533600	7457900	32.4	0.7	7.5	0.41	0.97	0.26	0.18
24080530	533600	7457800	34.5	0.7	6.5	0.35	0.89	0.24	0.16
24080542	533600	7456600	26.2	1.4	8.5	0.51	1.36	0.35	0.21
24080218	530800	7453500	22.2	bd	8.0	0.52	1.23	0.36	0.21
24080220	530800	7453300	22.5	bd	8.7	0.58	1.33	0.39	0.14
24080221	530800	7453200	23.9	0.6	8.8	0.56	1.34	0.37	0.15
24080222	530800	7453100	27.6	9.8	7.3	0.46	1.16	0.30	0.15
24080224	530800	7452900	16.9	1.6	10.3	0.51	1.61	0.38	0.25
24080256	531200	7453300	18.4	6.9	8.0	0.50	1.16	0.34	0.10
24080258	531200	7453100	22.8	1.2	8.3	0.52	1.23	0.37	0.27
24080259	531200	7453000	21.3	1.9	8.6	0.49	1.41	0.35	0.24
24080260	531200	7452900	19.7	1.5	8.3	0.47	1.49	0.36	0.23
24080261	531200	7452800	17.6	1.7	9.6	0.59	1.80	0.39	0.28
24080316	531600	7452900	20.2	0.8	8.8	0.51	1.20	0.39	0.09
24080317	531600	7452800	20.2	8.0	8.4	0.51	1.14	0.33	0.09
24080372	532000	7452900	24.1	4.7	6.0	0.42	1.04	0.27	0.21
24080373	532000	7452800	22.8	1.2	9.3	0.47	1.49	0.36	0.27
24080514	533200	7453400	22.8	2.3	9.8	0.44	1.28	0.37	0.16
24080515	533200	7453300	25.8	4.6	9.6	0.44	1.14	0.35	0.23
24080516	533200	7453200	22.1	1.7	9.8	0.45	1.29	0.42	0.28
24080560	533600	7453400	28.3	1.3	7.9	0.51	1.07	0.37	0.16
24080561	533600	7453300	30.3	5.8	7.9	0.59	1.18	0.42	0.19
24080562	533600	7453200	27.8	0.7	8.8	0.59	1.36	0.44	0.21
24080563	533600	7453100	42.8	3.0	10.5	0.45	1.39	0.40	0.27
24080564	533600	7453000	26.0	1.0	9.2	0.51	1.26	0.39	0.23
24080584	534000	7453300	23.0	0.7	8.9	0.52	1.01	0.40	0.18
24080586	534000	7453100	25.6	1.7	8.1	0.50	1.26	0.37	0.21
24080587	534000	7453000	26.8	1.1	9.5	0.52	1.36	0.39	0.21
24080588	534000	7452900	25.0	2.2	9.6	0.54	1.33	0.38	0.23
24080589	534000	7452800	22.2	1.2	9.4	0.52	1.27	0.39	0.20

Table 3.Pincher Well North. Selected assay results ≥1000 ppm Zn drill samples.

HoleID	From	То	(m)	Sample ID	Zn ppm	S ppm	Ag ppm	As ppm	Cu ppm	Pb ppm
VMC251	68	72	4	24105029	1,575	2,886	0.14	2.0	22.5	6.6
VMC251	72	76	4	24105030	3,297	48,750	1.28	1.9	163.0	5.7
VMC251	76	80	4	24105031	21,347	59,557	2.54	2.4	259.0	25.6
VMC251	80	84	4	24105032	11,755	22,288	1.31	7.0	94.2	60.8
VMC251	84	88	4	24105033	1,174	6,390	0.53	2.9	43.9	31.5

This announcement is authorised by the Board of Venus Metals Corporation Limited.

For further information please contact:

Venus Metals Corporation Limited

Matthew Hogan

Managing Director

Ph +61 8 93 21 7541 info@venusmetals.com.au

Competent Person's Statement

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation compiled by Dr F. Vanderhor, Geological Consultant of Venus Metals Corporation Ltd, who is a member of The Australian Institute of Geoscientists (AIG). Dr Vanderhor has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Vanderhor consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report has also been prepared by Mr Kumar Arunachalam, who is a Member of The Australasian Institute of Mining and Metallurgy and a full-time employee of the Company. Mr Arunachalam has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Arunachalam consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Venus Metals Corporation Limited planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Venus Metals Corporation Ltd believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	Commentary
Sampling techniques	Copper Hills soil geochemical survey
	 438 samples of B-soil horizon soil were collected on Redscope Enterprise's (wholly owned subsidiary in the name of Venus Metals Corporation Ltd) tenement E45/6437.
	Youanmi Reverse Circulation drill program
	 Venus drilled 6 reverse circulation (RC) holes for a total of 733m. One-metre RC samples of 1.5-2kg were collected from a rig-mounted splitter and bagged using labelled calico bags. Composite RC samples were collected from drill spoil piles using a plastic spear taking a total of c. 1.5kg of sample that was placed in a labelled calico bag. Individual one-metre samples were bagged, labelled and temporarily stored on site awaiting further analysis. Sampling was by VMC staff.
Drilling techniques	 RC holes were first drilled down to 6m depth with a 5.5-inch hammer to fit a PVC collar, and the remainder was drilled with a 5-inch hammer. Downhole surveys were done for all RC holes using a Gyro instrument, usually at 30m intervals. All holes were drilled at a nominal angle of -60° or -90° and set up using a compass.
Drill sample recovery	 No recovery issues were reported in the VMC drilling reports. The recovery was generally good. In rare cases where samples were wet, water was allowed to drain away before taking a sample. Holes were terminated when groundwater became excessive.
Logging	 For all holes, small sub-samples were washed and stored in chip trays for reference. A qualified geologists logged all holes in full. Photographs were taken of chip trays and drill spoil piles.
Sub-sampling techniques and sample preparation	 Soil geochemical survey Soil samples were screened to -80 mesh in the field for ultrafine analysis. Soil samples were submitted to LabWest, Malaga, Perth, for its ultrafine sample preparation, digest and ICPMS-OES analysis for a suite of 53 elements including Pt and Pd.
	 Reverse Circulation drilling Four-metre composite RC drill samples (c. 1.5kg) were submitted to Jinning Laboratories (Perth) for 60 element analyses using mixed acid digest with ICPMS-ICPOES finishes. Sample preparation at Jinnings Laboratories, Perth, comprised crushing and milling of the total sample to a nominal

Criteria	Commentary
	minus 75 μm.
	The above sample sizes and analytical techniques are considered adequate for gold and base metals analysis.
Quality of assay data and laboratory tests	Quality procedures for the analyses of soils and drill samples include the insertion of standards, controls and blanks.
Verification of sampling and assaying	No independent verification of sampling and assaying has been carried out.
Location of data points	Copper Hills Project
	 A handheld GPS with an accuracy of +/-4m was used to locate soil sample locations. Grid systems used for the Copper Hills Project are geodetic datum: GDA 94, Projection: MGA, Zone 51.
	 Youanmi Project A handheld REACH RS2+ with Multi-band RTK GNSS receiver with centimetre precision was used to locate the RC collar positions with an accuracy of +/-5cm. The use of the REACH RS2+ instrument was made possible in the field by the availability of Starlink satellite internet access. Grid systems used for the Youanmi Project are geodetic datum: GDA 94, Projection: MGA, Zone 50.
Data spacing and distribution	Soil geochemical survey The soil line spacing was 400m with samples 100m apart.
	 On tenement E57/986 RC holes were drilled to test coincident magnetic and gravity anomalies at two locations, and a pre-collar for later diamond tail of (400m) 5000 Siemen plate conductor (refer ASX release 31 January 2024). RC holes in tenement E57/1019 were drilled to test known mineralisation at depth including pre-collars for two inclined diamond tails for future drilling and metallurgical test work. All RC samples were composited to 2 to 4m intervals, depending on the interval length.
Orientation of data in relation to	Soil geochemical survey
geological structure	 The soil sampling was of a reconnaissance nature in areas with sand dune cover and limited bedrock outcrop. Traverses were orientated north-south, generally at high angle to the interpreted strike of bedrock lithologies or targeted geophysical features (see Figure 2 for details).
	Reverse Circulation drilling
	 Inclined RC drill holes were orientated into coincident geophysical magnetic and gravity anomalies (refer ASX release 31 January 2024). One vertical pre-collar was drilled for a diamond tail to target a conductor at 400m depth (refer ASX release 31 January 2024). Two inclined pre-collars were drilled adjacent to previous collars for diamond tails to intersect the known mineralised envelope. A vertical hole (VMC252) was drilled to test interpreted gently dipping mineralisation at

Criteria	Commentary
	depth.
Sample security	 All samples were transported directly to the Venus Perth office by staff or contractors before the samples were submitted to the Perth laboratories.
Audits or reviews	No audits or reviews have been carried out to date on sampling techniques and data.

Section 2 Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	 The Copper Hills Project Exploration tenement E45/6437 is 100% owned by Redscope Enterprises Pty Ltd (a fully owned subsidiary of Venus Metals Corporation Limited) and it falls within Martu Native Title claim area.
	The Youanmi Base Metals Project
	Tenement E57/986 is Venus Metals Ltd 90% and Prospector 10% (free carried) for all commodities except gold. Tenement E57/1019 is 100% held by Venus Metals Ltd for all commodities except gold.
	To the best of Venus' knowledge, there are no known impediments to operate on the above listed Els.
Exploration done by other parties	 Historically the Copper Hills Project tenement was explored for gold/ base metals/PGE and Uranium by various explorers including CRA exploration, Prosilver Nominees Pty Ltd, North Flinders Mines Ltd, PNC Exploration (Australia) Pty Ltd, Australian Platinum Mines NL, Western Areas NL, and Fortescue Metals Group Ltd.
	At the Youanmi project, extensive historical exploration drilling data (Diamond, RC, PER, RAB), and geophysical data by previous companies were utilized.
Geology	The Copper Hills Project Area is located in the remote southern section of the Palaeo- to Neoproterozoic Paterson Orogen in Western Australia. The area predominantly covers Palaeoproterozoic metasediments of the Tabletop Terrane within the Rudall Metamorphics and is in close proximity to the Camel-Tabletop Fault Zone, a major crustal-scale structure that has been interpreted as the collisional boundary between the Tabletop Terrane and the western Talbot and Connaughton Terranes of the Rudall Complex. The Tabletop Terrane comprises a poorly exposed sequence of mafic schist, amphibolites, and meta sedimentary rocks

Criteria	Commentary
Drill hole Information	 including dolomites. The Paterson Orogen contains the Kintyre uranium deposits, the Nifty base metal mine and the Telfer gold mine. The main attraction for historical platinum exploration were the PM veins at the Copper Hills prospects which showed exotic occurrence of copper carbonate with extremely high assays of silver, PGEs, and gold. Most recently the interest in those deposits has been renewed as copper targets after regional mapping by government geologist showed fault-related copper anomalies to be relatively common in the area and spatially related to the area of the Camel-Tabletop Fault Zone. It has been suggested that the structurally controlled and unconformity associated copper mineralisation may have been at least partly contemporaneous with a reactivation of the Camel-Tabletop Fault Zone at about 800 Ma, forming a 3-10 km-wide graben structure that filled with sedimentary rocks of the Officer Basin ("Copper and associated polymetallic mineralization along the Camel-Tabletop Fault Zone in the Paterson Orogen, Western Australia" GSWA Annual Review 1999-2000, Bagas and Lubieniecki, 2000). The Youanmi Project covers part of the Youanmi Greenstone Belt and comprises VHMS-style base metals mineralization within a felsic to intermediate volcano-sedimentary sequence associated with BIF and chert layers. All RC collar positions are shown in Figure 3 in the announcement and drill hole collar data is summarized in Table 1.
Data aggregation methods	No data aggregation applied.
Relationship between mineralisation widths and intercept lengths	 Mineralization intersected in drillhole VMC251 represents downhole length, and true thickness and width of mineralization is yet to be determined.
Diagrams	See figures attached to this release.
Balanced reporting	 Soil assays listed in Table 2 are all 95^{pctl} results for Cu, Au, As, Bi, Mo, Sb, and W. All assays for RC drill samples with > 1000ppm Zn are presented in Table 3.
Other substantive exploration data	Copper Hills Project • Paterson regional AEM survey (Geoscience Australia, Record 2010/12).

Criteria	Commentary
	 Venus completed a limited drilling programme of 3 diamond holes for 980.5m in 2014 (refer ASX releases 8 October 2014, 19 December 2014).
Further work	Planning for further sampling and geological mapping. Exploration drilling as required.