

20 February 2018

ASX Announcements Office 152–158 St Georges Terrace Perth WA 6000 Australia

Widespread Lithium Mineralisation Confirmed at Kitotolo Lithium Project

- Assay results received confirm the presence of widespread near surface lithium mineralisation in extremely weathered pegmatite exposures over 1km in strike length and which remains open in all directions;
- Assays received are from the first 43 test pits and 9 trenches completed in November and
 December 2017 as part of the Phase 1 Lithium Exploration Program;
- Results have confirmed the continuous strike interpretations along the NE/SW orientation and have reinforced the regional pegmatite orientation across the Kitotolo Mining and Exploration licences which lie 40km south-west and along-strike of AVZ Minerals Limited's 'world-class' Manono Lithium Project;
- Trenching result include:
 - 10m@0.25% Li₂0, including 1m@0.53% Li₂O (Trench #1);
 - 20m@0.21% Li₂O, including 1m@0.67% Li₂O and 1m@0.52% Li₂O (Trench #2); and
 - 21m @ 0.26 % Li₂O including 4m@0.50% Li₂O and 4m@0.34% Li₂O (Trench #8);
- Assay sample grades are considered to be indicative of near surface and highly weathered pegmatite and are consistent with the regional structures and support the significant potential for the Kitotolo Lithium Project to host significant pegmatite-hosted high-grade lithium mineralisation in the fresh rock;
- Phase 1 (balance of) and Phase 2 Lithium Exploration Programs to be completed with additional test pitting and trench work to further map the near surface expression and extensions of the pegmatite and lithium mineralisation; and
- Initial RC drilling program to commence at the Kitotolo Lithium Project in March 2018 following recent discussions with drilling contractors to mobilise drill rigs which will allow the Company to rapidly drill-test the fresh pegmatite and lithium mineralisation below the lateritic cover and weathered profile.

F: +61 8 6323 3347 | web:forcecommodities.com.au | Email: admin@forcecommodities.com.au | ABN 12 145 184 667 | ASX:4CE

Force Commodities Ltd (**Force** or the **Company**) (ASX Code: **4CE**) is pleased to confirm that assay results have been received for the first 43 test pits and 9 trenches completed.

The assay results have confirmed the presence of widespread pegmatite-hosted lithium mineralisation near surface and in an inferred structural corridor, 40km south-west and along-strike of AVZ Minerals Limited's 'world-class' Manono Lithium Project.

The results have further confirmed the continuous strike interpretations along the NE/SW orientation and reinforce the regional pegmatite orientation across the Kitotolo Mining and Exploration licences.

The assay results are from work completed in the Phase 1 Lithium Exploration Program conducted during November and December 2017 and includes trenching, test pitting and rock chip sampling over an initial strike length of ~ 1km at the Company's Kitotolo Lithium Project located in in Tanganyika Province in the south east of the Democratic Republic of Congo (**DRC**).

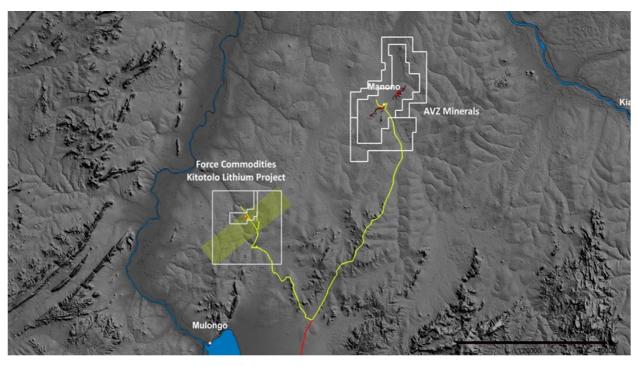


Figure 1: Kitotolo Lithium Project location and access from the regional town of Manono. © Jaxa DTM image

Force's Head of Exploration, Mr. James Sullivan said:

"The results of the initial Phase 1 Exploration Program conducted at the Kitotolo Lithium Project are significant, having confirmed the extensions of insitu and highly weathered pegmatite over a strike length in excess of 1km."

"The assay results received are highly encouraging, in line with our expectations and consistent with the regional setting, and they continue to highlight the potential of the Kibaran Belt within the Kitotolo Lithium Project to host significant pegmatite hosted lithium mineralisation."

"Further exploration, including the completion of Phase 1, and the commencement of Phase 2 which will focus on more test pitting and trenching to target extensions to the known near-surface pegmatites, is set to commence later this quarter."

"Discussions with a number of drilling contractors, who are currently in Manono, has advanced significantly over the past month, and mobilisation to site to commence a maiden RC drilling program is advancing and is aimed at rapidly advancing our understanding of the underlying fresh pegmatite geochemistry at the Kitotolo Lithium Project and the much-anticipated higher grades of lithium that are expected."

Phase 1 Lithium Exploration Program

The Phase 1 Lithium Exploration Program that commenced at the Kitotolo Lithium Project in late November 2017 was aimed at testing strike extensions of the exposed pegmatite at the historical Katamba Pit and the associated lithium/spodumene mineralisation identified during the previous Due Diligence Program.

An initial 43 test pits and nine trenches totalling 586m line metres was completed prior to the end of the calendar year. A further 78 test-pits are still to be completed.

A total of 4 of the 9 trenches intersected shallow and highly weathered pegmatite and zones of lithium mineralisation beneath approx. 6m of lateritic cover. The total strike extent defined by trenching and test pitting is in excess of 1km. Test pitting in the furthermost NE corner of the initial Phase 1 Lithium Exploration Program area, successfully identified pegmatite lithologies in test pit 040 – located approx. 1km NE of the Katamba Pit and which is interpreted to add a continuous strike along the NE/SW orientation and supporting the regional pegmatite orientation interpretations across the Kitotolo Mining and Exploration licences.

Work to date has primarily focused on strike length and not the width of the pegmatite, although it is apparent that the width comfortably exceeds 50m in the areas tested. The pegmatite exposed in trenching has an apparent dip of approximately 12 degrees west and the dip is interpreted to have a- shallower dip towards the NE.

The pegmatite remains open towards NE and SW directions.

Significant assay intercepts returned from the trench sampling included the following intersections:

• Trench 001: 10m @ 0.25% Li₂0

(incl. 1m @ 0.53% Li₂O)

Trench 002: 20m @ 0.21% Li₂O

(incl. 1m @ 0.67% Li₂O)

(incl. 1m @ 0.52% Li₂O)

(incl. 1m @ 0.50% Li₂O)

• Trench 008: 21m @ 0.26 % Li₂O

(incl. 4m @ 0.50% Li₂O)

(incl. 4m @ 0.34% Li₂O)

(incl. 3m @ 0.27% Li₂O)

Kitotolo Phase 1 Trench Summary

DATASET	DATE	TRAVERSE NO. (E/N)	NUMBER SAMPLES	TOTAL LENGTH
Katamba	28-Nov 2017	Katamba TR001 12		12m
Katamba	29-Nov 2017	Katamba TR002	20	30m
Katamba	30-Nov 2017	Katamba TR003	66	123m
Katamba	01-Dec 2017	Katamba TR004	not sampled	230m
Katamba	02-Dec 2017	Katamba TR005	not sampled	78m
Katamba	03-Dec 2017	Katamba TR006	10	20m
Katamba	04-Dec 2017	Katamba TR007	not sampled	31m
Katamba	07-Dec 2017	Katamba TR008	45	58m
Katamba	10-Dec 2017	Katamba TR009	not sampled	4m

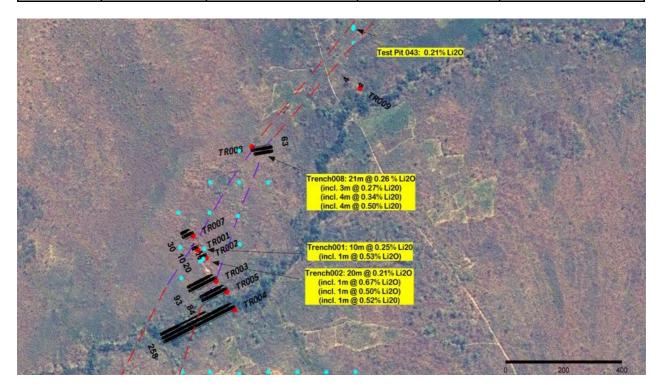


Figure 2: Kitotolo Lithium Project Phase 1 trench locations and assay locations

Kitotolo Phase 1 Test Pit Summary

A total of 43 test pits were completed during the initial Phase 1 Lithium Exploration Program. The test pits were conducted on 100m centres to cover a large area quickly.

Further test pitting and trenching as part of the Phase 1 (balance of) and Phase 2 Lithium Exploration Programs will target strike extensions of the current exposed pegmatites.

DATE	TRAVERSE NO. (E/N)	SAMPLES FROM	SAMPLES TO	SENT TO LAB
01-Dec 2017	Katamba TR001	4CE-A2328	4CE-A2337	03-Dec 2017
29-Nov 2017	Katamba TR002	4CE-A2533	4CE-A2549	18-Dec 2017
30-Nov 2017	Katamba TR003	4CE-A2340	4CE-A2416	18-Dec 2017
03-Dec 2017	Katamba TR006	4CE-A2429	4CE-A2438	18-Dec 2017
07-Dec 2017	Katamba TR008	4CE-A2458	4CE-A2528	18-Dec 2017

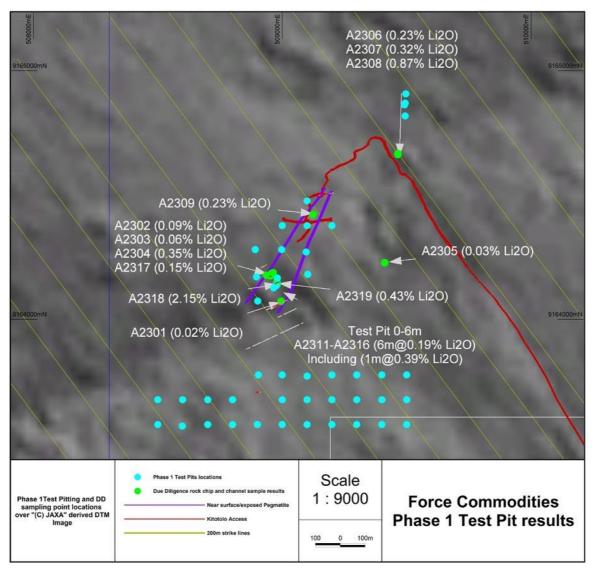


Figure 3: Rockchip and channel assays with new completed Phase 1 Test pit locations. © Jaxa DTM image

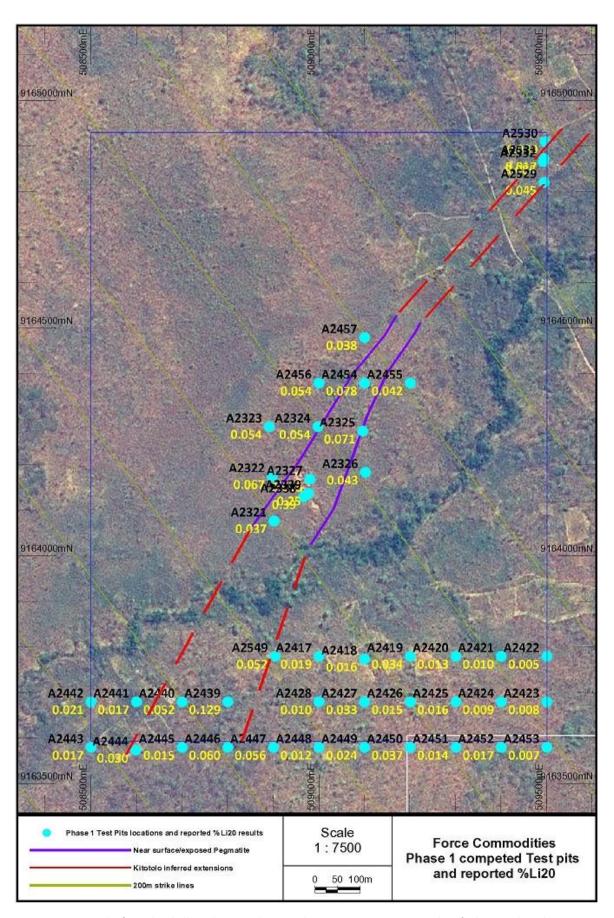


Figure 4: Assay results from the shallow Phase 1 Lithium Exploration Program test pits identified in weathered pegmatites

Assay Results and Discussion and Next Phases

The assay results from the initial Phase 1 Lithium Exploration Program have confirmed extensive near surface lithium mineralisation across significant areas in extremely weathered pegmatite on the Kitotolo Lithium Project.

This lithium mineralisation defined in trenching and test pit exposures has been identified as remaining open in all directions and across an initial strike length of more than 1km.

The assay results are considered indicative of near surface and highly weathered pegmatite as having significant lithium depletion which is typical of weathered pegmatites.

The results have further confirmed the continuous strike interpretations along the NE/SW orientation and have reinforced the regional pegmatite orientation across the Company's Kitotolo Mining and Exploration Licences.

In addition to the assays results already received, two samples of spodumene collected from Trench 002 have been sent to ALS Metallurgy (Perth) for further XRD analyses and these results are expected in mid-March 2018.

The Company's planned balance of the Phase 1 and next Phase 2 Lithium Exploration Programs is aimed at defining the extent of the near surface pegmatites within the Kitotolo Project area whilst aiding the understanding of the depths and orientations.

As a result of the initial results from the Phase 1 Lithium Exploration Program, and the confirmatory lithium assay results received, the Company has accelerated its discussions with a number of drilling contractors active in the Manono region.

The Company is advancing its plans to drill-test the fresh pegmatite and lithium mineralisation below the lateritic cover and weathered profile with an initial RC program focused on the Kitotolo Lithium Project. This program is scheduled to commence in March 2018. The Company is well positioned to complete this work with its established in-country technical and operational capability and strong existing cash balances.

END

Contact:

Michael Fry

Company Secretary
Force Commodities Limited

Tel: +61 (0) 8 9328 9368

Competent Person Statement

The information in this release that relates to sampling techniques and data, exploration results, geological interpretation and Exploration Targets, Mineral Resources or Ore Reserves has been compiled by Mr James Sullivan is a member of the Australian Institute of Geoscientists. Mr Sullivan is engaged by Force Commodities as a consultant geologist.

Mr Sullivan has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Sullivan consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

Forward looking statements

Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

Appendix 1 – Table 1 lists all recently received assay results from all test pits and trenches in this report.

Detect	Sample	Sample ID	Nouthing	Easting	Tuna	Li20 %	CN name	To	Lithology
Dataset	type	•	Northing		Type		SN_ppm	Ta_ppm	Lithology MSC
Katamba	PIT 1 PIT 2	A2321 A2322	508901	9164097	ORIG	0.037 0.067	27 7	1.34 1.07	MSC
Katamba	PIT 3		508897	9164194	ORIG		244	9.55	OLT
Katamba		A2323	508891	9164304	ORIG	0.054			
Katamba	PIT 4	A2324	508998	9164304	ORIG	0.054	61	3.48	MSC
Katamba	PIT 5	A2325	509096	9164294	ORIG	0.071	11	1.72	MSC
Katamba	PIT 6	A2326	509102	9164204	ORIG	0.043	4	0.87	MSC
Katamba	PIT 7	A2327	508980	9164189	ORIG	0.013	156	22.9	MSC
Katamba	PIT 8	A2549	508904	9163800	ORIG	0.052	35	1.48	MSC
Katamba	PIT 9	A2417	509000	9163800	ORIG	0.019	<3 6	0.78	MSC
Katamba	PIT 10	A2418	509100	9163794	ORIG	0.016		1.01	MSC
Katamba	PIT 11	A2419	509200	9163800	ORIG	0.034	30	1.04	MSC
Katamba	PIT 12	A2420	509300	9163800	ORIG	0.013	5	0.99	MSC
Katamba	PIT 13	A2421	509400	9163800	ORIG	0.01	<3	1.13	MSC
Katamba	PIT 14	A2422	509500	9163800	ORIG	0.005	<3	1.24	MSC
Katamba	PIT 15	A2423	509500	9163700	ORIG	0.008	<3	0.74	MSC
Katamba	PIT 16	A2424	509400	9163700	ORIG	0.009	<3	1.01	MSC
Katamba	PIT 17	A2425	509300	9163700	ORIG	0.016	27	13.55	MSC
Katamba	PIT 18	A2426	509200	9163700	ORIG	0.015	18	1.3	MSC
Katamba	PIT 19	A2427	509100	9163700	ORIG	0.033	3	0.97	MSC
Katamba	PIT 20	A2428	509000	9163700	ORIG	0.01	5	0.8	MSC
Katamba	PIT 21	A2439	508800	9163700	ORIG	0.129	44	0.88	MSC
Katamba	PIT 22	A2440	508700	9163700	ORIG	0.052	21	0.89	MSC
Katamba	PIT 23	A2441	508600	9163700	ORIG	0.017	7	1.01	MSC
Katamba	PIT 24	A2442	508500	9163700	ORIG	0.021	11	1.28	MSC
Katamba	PIT 25	A2443	508500	9163600	ORIG	0.017	10	1.2	MSC
Katamba	PIT 26	A2444	508598	9163594	ORIG	0.03	16	1.83	OLT
Katamba	PIT 27	A2445	508700	9163600	ORIG	0.015	40	5.68	GGT
Katamba	PIT 28	A2446	508800	9163600	ORIG	0.06	27	4.65	GGT
Katamba	PIT 29	A2447	508900	9163600	ORIG	0.056	32	4.54	GGT
Katamba	PIT 30	A2448	509000	9163600	ORIG	0.012	31	12.35	MSC
Katamba	PIT 31	A2449	509100	9163600	ORIG	0.024	<3	1.11	MSC
Katamba	PIT 32	A2450	509200	9163600	ORIG	0.037	48	1.43	OLT
Katamba	PIT 33	A2451	509300	9163600	ORIG	0.014	6	5.11	MSC
Katamba	PIT 34	A2452	509400	9163600	ORIG	0.017	3	1.09	MSC
Katamba	PIT 35	A2453	509500	9163600	ORIG	0.007	7	0.73	PEG
Katamba	PIT 36	A2454	509100	9164400	ORIG	0.078	21	14.8	MSC
Katamba	PIT 37	A2455	509200	9164400	ORIG	0.042	5	1.73	MSC
Katamba	PIT 38	A2456	509000	9164400	ORIG	0.054	<3	1.01	MSC
Katamba	PIT 39	A2457	509100	9164500	ORIG	0.038	<3	1.13	PEG
Katamba	PIT 40	A2529	509494	9164841	ORIG	0.045	159	143	MSC
Katamba	PIT 41	A2530	509496	9164930	ORIG	0.039	9	1.52	PEG
Katamba	PIT 42	A2531	509494	9164893	ORIG	0.017	18	23.2	MSC
Katamba	PIT 43	A2532	509492	9164886	ORIG	0.086	23	2.16	OLT
Katamba	rock chip	A2338	508966	9164150	ORIG	0.39	411	115.5	PEG
Katamba	rock chip	A2339	508977	9164158	ORIG	0.25	10200	282	PEG

^{*}All test pit assay results reported have been reduced to Li2O, Sn and Ta from a larger 52 multi element suit.

Dataset	Sample ID	Sample type	From	То	Interval	Lithology	Sample Type	Li20_%	Sn_ppm	Ta_ppm
Katamba	A2328	TR001	0	1	1	MSC	ORIG	0.34	69	1.69
Katamba	A2329	TR001	1	2	1	PEG	ORIG	0.37	461	72.3
Katamba	A2330	TR001	2	3	1	PEG	ORIG	0.53	2130	126.5
Katamba	A2331	TR001	3	4	1	PEG	ORIG	0.13	1160	47.9
Katamba	A2332	TR001	4	5	1	PEG	ORIG	0.15	985	59.3
Katamba	A2333	TR001	5	6	1	PEG	ORIG	0.16	5390	177
Katamba	A2334	TR001	6	7	1	PEG	ORIG	0.13	3800	74.5
Katamba	A2335	TR001	7	8	1	PEG	ORIG	0.24	990	69.7
Katamba	A2336	TR001	8	9	1	PEG	ORIG	0.25	225	21.1
Katamba	A2337	TR001	9	10	1	PEG	ORIG	0.17	534	39.9
Katamba	A2533	TR002	0	1	1	MSC	ORIG	0.03	7	3.39
Katamba	A2534	TR002	1	2	1	PEG	ORIG	0.06	107	38.2
Katamba	A2535	TR002	2	3	1	PEG	ORIG	0.27	190	18.5
Katamba	A2536	TR002	3	4	1	PEG	ORIG	0.24	2090	52.9
Katamba	A2537	TR002	4	5	1	PEG	ORIG	0.14	625	50.1
Katamba	A2538	TR002	5	6	1	PEG	ORIG	0.29	2410	85.1
Katamba	A2539	TR002	6	7	1	PEG	ORIG	0.43	366	50.8
Katamba	A2540	TR002	7	8	1	PEG	ORIG	0.45	815	44.1
Katamba	A2541	TR002	8	9	1	PEG	ORIG	0.67	675	62
Katamba	A2542	TR002	9	10	1	PEG	ORIG	0.11	20	5.46
Katamba	A2543	TR002	10	11	1	PEG	ORIG	0.05	17	2.97
Katamba	A2544	TR002	11	12	1	PEG	ORIG	0.16	40	7.78
Katamba	A2545	TR002	12	13	1	PEG	ORIG	0.50	263	40
Katamba	A2546	TR002	13	14	1	PEG	ORIG	0.08	28	7.83
Katamba	A2547	TR002	14	15	1	PEG	ORIG	0.52	208	81
Katamba	A2548	TR002	15	16	1	PEG	ORIG	0.17	449	24.5
Katamba	NS	TR002	16	17	1	PEG	NS	0.00	NS	NS
Katamba	NS	TR002	17	18	1	PEG	NS	0.00	NS	NS
Katamba	NS	TR002	18	19	1	PEG	NS	0.00	NS	NS
Katamba	A2549	TR002	19	20	1	MSC	ORIG	0.05	35	1.48
Katamba	A2340	TR003	0	1	1	MSC	ORIG	0.10	80	3.04
Katamba	A2341	TR003	1	2	1	MSC	ORIG	0.07	17	4.99
Katamba	A2342	TR003	2	3	1	MSC	ORIG	0.08	6	1.27
Katamba	A2343	TR003	3	4	1	MSC	ORIG	0.09	4	1.46
Katamba	A2344	TR003	4	5	1	MSC	ORIG	0.08	8	1.47
Katamba	A2345	TR003	5	6	1	MSC	ORIG	0.09	7	1.43
Katamba	A2346	TR003	6	7	1	MSC	ORIG	0.10	4	1.13
Katamba	A2347	TR003	7	8	1	MSC	ORIG	0.10	15	1.1
Katamba	A2348	TR003	8	9	1	MSC	ORIG	0.10	<3	1.08
Katamba	A2349	TR003	9	10	1	OLT	ORIG	0.06	99	18.1

Dataset	Sample ID	Sample type	From	То	Interval	Lithology	Sample Type	Li20_%	Sn_ppm	Ta_ppm
Katamba	A2350	TR003	10	11	1	OLT	ORIG	0.05	128	15.35
Katamba	A2351	TR003	11	12	1	OLT	ORIG	0.08	70	9.67
Katamba	A2352	TR003	12	13	1	OLT	ORIG	0.06	185	675
Katamba	A2353	TR003	13	14	1	OLT	ORIG	0.08	103	8.64
Katamba	A2354	TR003	14	15	1	OLT	ORIG	0.07	70	47.9
Katamba	A2355	TR003	15	16	1	OLT	ORIG	0.05	180	9.38
Katamba	A2356	TR003	16	17	1	OLT	ORIG	0.06	552	23.9
Katamba	A2357	TR003	17	18	1	OLT	ORIG	0.05	80	10.4
Katamba	A2358	TR003	18	19	1	OLT	ORIG	0.05	234	19.85
Katamba	A2359	TR003	19	20	1	OLT	ORIG	0.05	134	34.9
Katamba	A2360	TR003	20	21	1	OLT	ORIG	0.05	86	11.05
Katamba	A2361	TR003	21	22	1	OLT	ORIG	0.05	135	113.5
Katamba	A2362	TR003	22	23	1	OLT	ORIG	0.05	461	188.5
Katamba	A2363	TR003	23	24	1	OLT	ORIG	0.04	187	28.2
Katamba	A2364	TR003	24	25	1	OLT	ORIG	0.05	92	40.4
Katamba	A2365	TR003	25	26	1	OLT	ORIG	0.06	80	8.84
Katamba	A2366	TR003	26	27	1	OLT	ORIG	0.05	162	261
Katamba	A2367	TR003	27	28	1	OLT	ORIG	0.06	147	14.9
Katamba	A2368	TR003	28	29	1	OLT	ORIG	0.04	250	25.7
Katamba	A2369	TR003	29	30	1	OLT	ORIG	0.02	372	18.85
Katamba	A2370	TR003	30	31	1	OLT	ORIG	0.04	586	36.8
Katamba	A2371	TR003	31	32	1	OLT	ORIG	0.04	321	63.9
Katamba	A2372	TR003	32	33	1	OLT	ORIG	0.06	266	26.4
Katamba	A2373	TR003	33	34	1	MSC	ORIG	0.08	51	1.77
Katamba	A2374	TR003	34	35	1	MSC	ORIG	0.04	1930	107.5
Katamba	A2375	TR003	35	36	1	PEG	ORIG	0.02	92	41.3
Katamba	A2376	TR003	36	37	1	PEG	ORIG	0.01	434	59.5
Katamba	A2377	TR003	37	38	1	PEG	ORIG	0.04	991	64.1
Katamba	A2378	TR003	38	39	1	MSC	ORIG	0.13	196	1.93
Katamba	A2379	TR003	39	40	1	MSC	ORIG	0.06	104	2.2
Katamba	A2380	TR003	40	41	1	MSC	ORIG	0.03	52	2.39
Katamba	A2381	TR003	41	42	1	PEG	ORIG	0.04	7650	221
Katamba	A2382	TR003	42	43	1	PEG	ORIG	0.04	199	239
Katamba	A2383	TR003	43	44	1	PEG	ORIG	0.05	343	95
Katamba	A2384	TR003	44	45	1	PEG	ORIG	0.04	126	86
Katamba	A2385	TR003	45	46	1	PEG	ORIG	0.03	94	61.3
Katamba	A2386	TR003	46	47	1	PEG	ORIG	0.05	149	97.1
Katamba	A2387	TR003	47	48	1	PEG	ORIG	0.04	335	192
Katamba	A2388	TR003	48	49	1	PEG	ORIG	0.03	43	71.8
Katamba	A2389	TR003	49	50	1	PEG	ORIG	0.03	59	41.5

Dataset	Sample ID	Sample type	From	То	Interval	Lithology	Sample Type	Li20_%	Sn_ppm	Ta_ppm
Katamba	A2390	TR003	50	51	1	PEG	ORIG	0.04	86	49
Katamba	A2391	TR003	51	52	1	PEG	ORIG	0.03	39	60.1
Katamba	A2392	TR003	52	53	1	PEG	ORIG	0.02	122	124.5
Katamba	A2393	TR003	53	54	1	PEG	ORIG	0.03	50	53.7
Katamba	A2394	TR003	54	55	1	PEG	ORIG	0.02	54	68.2
Katamba	A2395	TR003	55	56	1	PEG	ORIG	0.03	71	126.5
Katamba	A2396	TR003	56	57	1	PEG	ORIG	0.01	49	67.5
Katamba	A2397	TR003	57	58	1	PEG	ORIG	0.01	4	85.8
Katamba	A2398	TR003	58	59	1	PEG	ORIG	0.01	12	60.2
Katamba	A2399	TR003	59	60	1	PEG	ORIG	0.02	51	27.7
Katamba	A2400	TR003	60	61	1	PEG	ORIG	0.06	101	37.9
Katamba	A2412	TR003	61	62	1	PEG	ORIG	0.02	52	30.1
Katamba	A2413	TR003	62	63	1	PEG	ORIG	0.02	352	61.6
Katamba	A2414	TR003	63	64	1	PEG	ORIG	0.01	33	36.6
Katamba	A2415	TR003	64	65	1	PEG	ORIG	0.01	115	112
Katamba	A2416	TR003	65	66	1	PEG	ORIG	0.01	676	71.3
Katamba	NS	TR003	66	71	5	MSC	NS	0.00	NS	NS
Katamba	NS	TR003	71	93	22	MSC	NS	0.00	NS	NS
Katamba	NS	TR004	0	25	25	MSC	NS	0.00	NS	NS
Katamba	NS	TR004	25	45	20	MSC	NS	0.00	NS	NS
Katamba	NS	TR004	45	94	49	MSC	NS	0.00	NS	NS
Katamba	NS	TR004	94	109	15	MSC	NS	0.00	NS	NS
Katamba	NS	TR004	109	143	34	MSC	NS	0.00	NS	NS
Katamba	NS	TR004	143	174	31	MSC	NS	0.00	NS	NS
Katamba	NS	TR004	174	181	7	MSC	NS	0.00	NS	NS
Katamba	NS	TR004	181	200	19	MSC	NS	0.00	NS	NS
Katamba	NS	TR004	200	216	16	MSC	NS	0.00	NS	NS
Katamba	NS	TR004	216	237	21	MSC	NS	0.00	NS	NS
Katamba	NS	TR004	237	258	21	MSC	NS	0.00	NS	NS
Katamba	NS	TR005	0	4	4	MSC	NS	0.00	NS	NS
Katamba	NS	TR005	4	26	22	MSC	NS	0.00	NS	NS
Katamba	NS	TR005	26	54	28	MSC	NS	0.00	NS	NS
Katamba	NS	TR005	54	84	30	MSC	NS	0.00	NS	NS
Katamba	A2429	TR006	0	2	2	MSC	ORIG	0.08	5	1
Katamba	A2430	TR006	2	4	2	MSC	ORIG	0.08	<3	1.1
Katamba	A2431	TR006	4	6	2	GGT	ORIG	0.05	94	5.62
Katamba	A2432	TR006	6	8	2	GGT	ORIG	0.10	134	9.1
Katamba	A2433	TR006	8	10	2	GGT	ORIG	0.14	136	10.9
Katamba	A2434	TR006	10	12	2	GGT	ORIG	0.09	43	4.15
Katamba	A2435	TR006	12	14	2	GGT	ORIG	0.06	35	4.4

Dataset	Sample ID	Sample type	From	То	Interval	Lithology	Sample Type	Li20_%	Sn_ppm	Ta_ppm
Katamba	A2436	TR006	14	16	2	GGT	ORIG	0.07	41	4.6
Katamba	A2437	TR006	16	18	2	GGT	ORIG	0.07	34	4.43
Katamba	A2438	TR006	18	20	2	GGT	ORIG	0.09	48	5.05
Katamba	NS	TR007	0	14	14	MSC	NS	0.00	NS	NS
Katamba	NS	TR007	14	30	16	MSC	NS	0.00	NS	NS
Katamba	A2458	TR008	0	7	7	OLT	ORIG	0.05	15	13.95
Katamba	A2459	TR008	7	9	2	OLT	ORIG	0.05	35	3.17
Katamba	A2460	TR008	9	10	1	PEG	ORIG	0.19	81	23.6
Katamba	A2461	TR008	10	11	1	PEG	ORIG	0.35	80	11.25
Katamba	A2462	TR008	11	12	1	PEG	ORIG	0.28	69	48.1
Katamba	A2463	TR008	12	13	1	PEG	ORIG	0.09	18	3.82
Katamba	A2464	TR008	13	14	1	PEG	ORIG	0.14	47	81.9
Katamba	A2465	TR008	14	15	1	PEG	ORIG	0.09	16	4.78
Katamba	A2466	TR008	15	16	1	PEG	ORIG	0.09	16	3.75
Katamba	A2467	TR008	16	17	1	PEG	ORIG	0.19	33	8.68
Katamba	A2468	TR008	17	18	1	PEG	ORIG	0.16	201	17.95
Katamba	A2469	TR008	18	19	1	PEG	ORIG	0.12	25	5.8
Katamba	A2470	TR008	19	20	1	PEG	ORIG	0.38	92	11.4
Katamba	A2471	TR008	20	21	1	PEG	ORIG	0.28	48	11.2
Katamba	A2472	TR008	21	22	1	PEG	ORIG	0.29	59	9.06
Katamba	A2473	TR008	22	23	1	PEG	ORIG	0.39	96	72.3
Katamba	A2474	TR008	23	24	1	PEG	ORIG	0.23	57	9.82
Katamba	A2475	TR008	24	25	1	PEG	ORIG	0.16	28	6.61
Katamba	A2476	TR008	25	26	1	PEG	ORIG	0.03	5	3.75
Katamba	A2477	TR008	26	27	1	PEG	ORIG	0.69	149	20.1
Katamba	A2478	TR008	27	28	1	PEG	ORIG	0.29	67	8.21
Katamba	A2479	TR008	28	29	1	PEG	ORIG	0.45	132	14
Katamba	A2480	TR008	29	30	1	PEG	ORIG	0.55	139	18.2
Katamba	A2481	TR008	30	31	1	PEG	ORIG	0.07	16	39
Katamba	A2482	TR008	31	32	1	PEG	ORIG	0.07	16	11.25
Katamba	A2483	TR008	32	33	1	PEG	ORIG	0.03	5	3.26
Katamba	A2484	TR008	33	34	1	PEG	ORIG	0.03	8	4.61
Katamba	A2485	TR008	34	35	1	PEG	ORIG	0.04	17	4.59
Katamba	A2486	TR008	35	36	1	PEG	ORIG	0.03	8	11.6
Katamba	A2487	TR008	36	37	1	PEG	ORIG	0.03	4	1.91
Katamba	A2488	TR008	37	38	1	PEG	ORIG	0.03	6	4.38
Katamba	A2489	TR008	38	39	1	PEG	ORIG	0.03	6	2.36
Katamba	A2490	TR008	39	40	1	PEG	ORIG	0.02	7	1.7
Katamba	A2491	TR008	40	41	1	PEG	ORIG	0.02	7	5.12
Katamba	A2492	TR008	41	42	1	PEG	ORIG	0.03	8	2.17

Detect	Commis ID	Sample	F	То	Intonial	Likhalası	Canada Tana	1:20 0/	C	T
Dataset	Sample ID	type	From	10	Interval	Lithology	Sample Type	Li20_%	Sn_ppm	Ta_ppm
Katamba	A2493	TR008	42	43	1	PEG	ORIG	0.03	37	31
Katamba	A2494	TR008	43	44	1	PEG	ORIG	0.06	7	4.75
Katamba	A2495	TR008	44	45	1	PEG	ORIG	0.04	52	35.1
Katamba	A2496	TR008	45	46	1	PEG	ORIG	0.06	139	122.5
Katamba	A2497	TR008	46	47	1	MSC	ORIG	0.07	11	2.64
Katamba	A2498	TR008	47	48	1	MSC	ORIG	0.04	25	3.73
Katamba	A2499	TR008	48	49	1	MSC	ORIG	0.03	8	3.62
Katamba	A2500	TR008	49	50	1	MSC	ORIG	0.03	10	13.35
Katamba	A2527	TR008	50	51	1	MSC	ORIG	0.04	19	6.55
Katamba	A2528	TR008	51	63	12	MSC	ORIG	0.05	11	4.48

^{*}All Trench assay results reported have been reduced to Li2O, Sn and Ta from a larger 52 multi element suit.

APPENDIX 2 – JORC TABLE 1 CHECKLIST OF ASSESSMENT AND REPORTING CRITERIA

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	> Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	The pit walls were sampled through collection of rock-chips chiselled from a linear in-situ pit faces of the pit as a continuous channel-sample over 1m intervals. In some instances, rock chips were collected randomly from artisanal pit spoils and insitu bedrock
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	The continuous channel sampling provides 1m composite samples that are deemed representative of the sampled interval in the locality of sampling but cannot be considered representative of the overall and entire pegmatite body. The channelled samples and rock chips sampling of the pit walls was completed according to best practice and industry standards. Given the purpose of first pass ongoing reconnaissance nature of the exploration work, sampling practices employed have been deemed appropriate at the time. None of the rockchips or channel samples are appropriate for, or have been used for, Mineral Resource estimates. Recent channel/rock chip sampling has been completed for the purpose of helping to assist with the definition of mineralised zones within the shallow and weathered pegmatite outcrops and have been sampled in accordance with standardised sampling procedures and protocols.
Drilling techniques	> Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	This information release does not report drill sampling or results.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	This information release does not report drill sampling or results.
Logging	> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. > Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. > The total length and percentage of the relevant intersections logged.	This information release does not report drill sampling or results. Logging of the pit faces was both quantitative and qualitative. The Lithology excavated along the floor length of trenching was logged qualitatively, while the intervals of the pit floor sample ends were measured from a set beginning and end-points. Total lengths of 1m composites have been logged for test pit sampling.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled,	This information release does not report drill sampling or results.
preparation	rotary split, etc. and whether sampled wet or dry. > For all sample types, the nature, quality and appropriateness of the sample preparation technique. > Quality control procedures adopted for all subsampling stages to maximise representivity of samples. > Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. > Whether sample sizes are appropriate to the grain size of the material being sampled.	This information release does not report drill sampling or results. The samples from the channelled in-situ walls were collected as channel samples comprised of representative rock-chips. The bagged samples were sent to ALS Chemex Lubumbashi (DRC) where they were crushed and pulverized to a pulp. A 1000g subset was split from the pulp and sent to ALS Chemex Vancouver (RSA) for analytical determination No duplicate sampling has been undertaken for the rock chip or channel program. In-house laboratory duplicates have been relied upon. For first-pass reconnaissance sampling this is adequate. Sampling of pegmatites is problematic because of the variation in coarse grain size and mineral distribution. Of all the field surface sampling methods, channel sampling is considered to give the most reliable indication of the mineralization present as the
		resultant sample may incorporate a broader range of pegmatite material. The 2kg- 3kg mass of the samples is appropriate to the sampling methodology and the material being sampled.
Quality of assay data and laboratory tests	> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All channel/rockchip samples from the Phase 1 exploration program were shipped to the ALS laboratory in Lubumbashi, DRC for sample preparation and then Vancouver for chemical analysis. The crushing preparation code was CRU-31 (Prep 31B) (Crush to 70% less than 2mm, riffle split off 1kg, pulverize split to better than 85% passing 75 microns. The pulverizing code used was PUL-32 (Prep 31B) (Crush to 70% less than 2mm, riffle split off 1kg, pulverize split to better than 85% passing 75 microns The analyses code was ME-MS89L (Sodium Peroxide digestion with ICP-MS finish), which has a range for Li of 1 to 10,000 (1%) ppm Li. The Sodium Peroxide digestion quantitatively dissolves nearly all minerals in the majority of geological materials. However, it may sometimes be necessary to use even stronger dissolution techniques such as fusions in order to achieve fully quantitative results for refractory minerals.
	> For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. > Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	No geophysical Instruments were used in collecting or analysis. As sampling undertaken was of a first pass nature, only laboratory introduced standards, blanks and repeats were relied upon. Examination of the QA/QC sample data indicates satisfactory performance of field sampling protocols and assay laboratories providing acceptable levels of precision and accuracy.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	> The verification of significant intersections by either independent or alternative company personnel. > The use of twinned holes. > Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. > Discuss any adjustment to assay data.	No verification exploration work has so far been undertaken at this stage. This information released does not report drill sampling or results. The data from recent exploration is currently stored in hardcopy and digital format on site. A hard drive copy of this is located at the administration office in country and will be frequently uploaded to the company's database in Perth, WA. Samples were assayed for a multi element suite of 52 elements. However, the presented data has been reduced to include, Li2O, Sn and Ta. Li2O has been calculated from the reported assay result for Li in ppm. The calculation is % Li2O = (ppm Li x 2.153)/10000) and the presented results have been rounded to the third decimal place. No adjustments have been made to reported assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	The geological data, including start-point, end-points have been surveyed using handheld GPS devices, giving an accuracy of +/- 3m in open-ground. WGS84 UTM (Zone 35S) No survey has been undertaken. Hand held GPS coordinates have been utilised to locate sampling to date
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Sampling undertaken to date was of a reconnaissance nature and wide spread and focused on existing artisanal activity and mapped pegmatitic exposures. Not applicable as no resource estimation. Sampling undertaken to date was of a reconnaissance nature and wide spread along geologic bodies. By their nature, channel samples are composite samples
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Not applicable to the current sampling. Not applicable to the current sampling.
Sample security	> The measures taken to ensure sample security.	Drill core samples were shipped directly from the field by the project geologist in sealed rice bags or similar containers using a reputable transport company with shipment tracking capability so that a chain of custody can be maintained. Each bag was sealed with a security strap with a unique security number. The containers were locked in a shed if they were stored overnight at any point during transit, including at the drill site prior to shipping. The laboratory confirmed the integrity of the rice bag seals upon receipt
Audits or reviews	> The results of any audits or reviews of sampling techniques and data.	The sampling techniques and data have been reviewed and the assay results are believed to give a reliable indication of the lithium mineralisation within the samples.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Kitotolo licences consist of both Exploitation Permits and Research Permits PR 12453 (renewal) valid for 5 years and Exploitation Permit PPE13 PE13247 13247 (under application)
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	See above, no other known impediments.
Exploration done by other parties	> Acknowledgment and appraisal of exploration by other parties.	The licence area has been previously mined for tin and tantalum including "Coltan" through a series of open pits, the largest over a total length of approximately 120m excavated by Artisanal miners.
		No production records are available yet. All attempts have been made to collect all historical production/exploration records. Apart from the mining and test pit excavations, there has been no other exploration licences.
Geology	> Deposit type, geological setting and style of mineralisation.	The Kitotolo Lithium Project is an early stage exploration project. There are high grade lithium occurrences only at this stage. Further exploration programs will be required to determine whether the project has further economic potential. The Project lies within the mid-Proterozoic Kibaran Belt - an intracratonic domain, stretching for over 1,300 km through Katanga and into southwest Uganda. The belt strikes predominantly SW-NE and is truncated by the NS to NNW-SSE trending Western Rift system. The Kibaran comprises a sedimentary and volcanic sequence that has been folded, metamorphosed and intruded by at least three separate phases of granite. The latest granite phase (900 to 950 My ago) is assigned to the Katangan cycle and is associated with widespread vein and pegmatite mineralisation containing tin, Tungsten, Tantalum, Niobium, Lithium and Beryllium. Deposits of this type occur as clusters and are widespread throughout the Kibaran terrain. In the DRC, the Katanga Tin Belt stretches over 500 km from near Kolwezi in the southwest to Kalemie in the northeast comprising numerous occurrences and deposits of which the Manono deposit is currently the largest. The geology of the Kitotolo area is poorly documented and no reliable maps of local geology have been observed for the licence area.

Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	This information release does not report drill sampling or results. All data is limited to current
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All results being reported for pit faces are based on 1 metre interval lengths and have had sample intervals selected by 4CE personnel based on geological intervals and boundaries.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No top/lower cut have been applied. At this stage it is considered that an insufficient data set has been collected to allow geostatistical methods of any relevance. Methodology may change as the collected dataset increases.
	> The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not included in the reported results
Relationship	> These relationships are particularly	All results being reported for pit faces are based on 1 metre interval lengths and
between mineralisation	important in the reporting of Exploration Results.	have had sample intervals selected by 4CE personnel based on geological intervals and boundaries.
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	No top/lower cut have been applied.
	> If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	At this stage it is considered that an insufficient data set has been collected to allow geostatistical methods of any relevance. Methodology may change as the collected dataset increases.
Diagrams	> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to this press release body of text
Balanced reporting	> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Due to the nature of the early stage project status and limited sampling to date, the results should be considered indicative only and not material. All results should be considered in the limited context of the sampling program. The samples collected to date are considered representative of the exposed mineralisation only.

Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No further data available.
Further work	> The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling). > Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work may include mapping, soil sampling and bed rock sampling for geochemical anomalies to identify prospective target zones and then small amount of drill testing of higher priority targets. Diamond drilling may be included in subsequent phases of drilling.